Chase Joyner

901 Homework 2
October 4, 2017

Problem 2.6.13

If $\left\{B_{k}\right\}$ are events such that

$$
\sum_{k=1}^{n} P\left(B_{k}\right)>n-1
$$

then show $P\left(\bigcap_{k=1}^{n} B_{k}\right)>0$.
Solution: Suppose by way of contrapositive that $P\left(\bigcap_{k=1}^{n} B_{k}\right)=0$. Then,

$$
1=P\left(\bigcup_{k=1}^{n} B_{k}^{c}\right) \leq \sum_{k=1}^{n} P\left(B_{k}^{c}\right)=n-\sum_{k=1}^{n} P\left(B_{k}\right)
$$

Therefore, we have $\sum_{k=1}^{n} P\left(B_{k}\right) \leq n-1$. This proves the result.

Problem 3.4.8

Let X and Y be random variables and let $A \in \mathcal{B}$. Prove that the function

$$
Z(\omega)= \begin{cases}X(\omega), & \text { if } \omega \in A \\ Y(\omega), & \text { if } \omega \in A^{c}\end{cases}
$$

is a random variable.
Solution: Since X and Y are random variables, we have $X:(\Omega, \mathcal{B}) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and $Y:(\Omega, \mathcal{B}) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, i.e. for $C \in \mathcal{B}(\mathbb{R}), X^{-1}(C) \in \mathcal{B}$ and $Y^{-1}(C) \in \mathcal{B}$. We must show this is also true for Z. Take $C \in \mathcal{B}(\mathbb{R})$ and notice

$$
\begin{aligned}
Z^{-1}(C) & =\{\omega \in \Omega: Z(\omega) \in C\}=\{\omega \in \Omega: Z(\omega) \in C, \omega \in A\} \cup\left\{\omega \in \Omega: Z(\omega) \in C, \omega \in A^{c}\right\} \\
& =\{\omega \in A: X(\omega) \in C\} \cup\left\{\omega \in A^{c}: Y(\omega) \in C\right\} \\
& =(A \cap\{\omega \in \Omega: X(\omega) \in C\}) \cup\left(A^{c} \cap\{\omega \in \Omega: Y(\omega) \in C\}\right) \in \mathcal{B} .
\end{aligned}
$$

Therefore, Z is a random variable.

Problem 3.4.11

Let (Ω, \mathcal{B}, P) be $([0,1], \mathcal{B}([0,1]), \lambda)$, where λ is the Lebesgue measure on $[0,1]$. Define the process $\left\{X_{t}, 0 \leq t \leq 1\right\}$ by

$$
X_{t}(\omega)= \begin{cases}0, & \text { if } t \neq \omega \\ 1, & \text { if } t=\omega\end{cases}
$$

Show that each X_{t} is a random variable. What is the σ-field generated by $\left\{X_{t}, 0 \leq t \leq 1\right\}$?
Solution: Recall that $\mathcal{B}([0,1])$ can be generated by any kind of intervals in $[0,1]$. Now, choose $t \in[0,1]$ and see that

$$
X_{t}^{-1}(\{0\})=[0, t) \cup(t, 1] \in \mathcal{B}([0,1])
$$

and also

$$
X_{t}^{-1}(\{1\})=\{t\}=\bigcap_{n=1}^{\infty}[t, t+1 / n] \in \mathcal{B}([0,1]) .
$$

Therefore, X is a random variable. For any specific t_{0},

$$
\sigma\left(X_{t_{0}}\right)=X_{t_{0}}^{-1}(\mathcal{B}([0,1]))=X_{t_{0}}^{-1}(\{\{0\},\{1\}\})=\left\{\emptyset, \Omega,\left\{t_{0}\right\},\left[0, t_{0}\right) \cup\left(t_{0}, 1\right]\right\} .
$$

Since the process is over all $0 \leq t \leq 1$, we conclude the σ-field generated by this process is

$$
\sigma\left(\left\{X_{t}, 0 \leq t \leq 1\right\}\right)=\mathcal{B}([0,1]) .
$$

Problem 3.4.18

Coupling. If X and Y are random variables on (Ω, \mathcal{B}), show

$$
\sup _{A \in \mathcal{B}}|P(X \in A)-P(Y \in A)| \leq P(X \neq Y) .
$$

Solution: Let $A \in \mathcal{B}$ be arbitrary. Notice

$$
\{\omega \in \Omega: X(\omega) \in A\} \subset\{\omega \in \Omega: Y(\omega) \in A\} \cup\{\omega \in \Omega: X(\omega) \neq Y(\omega)\}
$$

Therefore, we have

$$
P(X \in A) \leq P(Y \in A)+P(X \neq Y)
$$

and so $P(X \in A)-P(Y \in A) \leq P(X \neq Y)$. Similarly,

$$
\{\omega \in \Omega: Y(\omega) \in A\} \subset\{\omega \in \Omega: X(\omega) \in A\} \cup\{\omega \in \Omega: X(\omega) \neq Y(\omega)\}
$$

Thus, we also have

$$
P(Y \in A) \leq P(X \in A)+P(X \neq Y)
$$

and so $P(Y \in A)-P(X \in A) \leq P(X \neq Y)$. Combining this with the inequality shown above, we conclude

$$
|P(X \in A)-P(Y \in A)| \leq P(X \neq Y)
$$

Since A was arbitrary, we can take supremum on both sides with respect to $A \in \mathcal{B}$ to obtain the result.

Problem 3.4.19

Suppose $T:\left(\Omega_{1}, \mathcal{B}_{1}\right) \rightarrow\left(\Omega_{2}, \mathcal{B}_{2}\right)$ is a measurable mapping and X is a random variable on Ω_{1}. Show $X \in \sigma(T)$ iff there is a random variable Y on $\left(\Omega_{2}, \mathcal{B}_{2}\right)$ such that for all $\omega_{1} \in \Omega_{1}, X\left(\omega_{1}\right)=Y\left(T\left(\omega_{1}\right)\right)$.

Solution: We first show the backwards direction. Assume there is a random variable Y on $\left(\Omega_{2}, \mathcal{B}_{2}\right)$ such that for all $\omega_{1} \in \Omega_{1}, X\left(\omega_{1}\right)=Y\left(T\left(\omega_{1}\right)\right)$. Then,

$$
\sigma(X)=\left\{X^{-1}(B): B \in \mathcal{B}(\mathbb{R})\right\}=\left\{T^{-1}\left(Y^{-1}(B)\right): B \in \mathcal{B}(\mathbb{R})\right\} \subset \sigma(T)
$$

and so $X \in \sigma(T)$. Now for the forward direction, suppose $X \in \sigma(T)$. First, assume X is a simple random variable, i.e. $X=\sum_{k=1}^{n} a_{k} I_{A_{k}}$, where each $A_{k} \in \sigma(T)$ and $a_{k} \in \mathbb{R}$. Again, since each $A_{k} \in \sigma(T)$, there exists $B_{k} \in \mathcal{B}_{2}$ such that $T^{-1}\left(B_{k}\right)=A_{k}$. Define $Y=\sum_{k=1}^{n} a_{k} I_{B_{k}}$. Clearly Y is a random variable since it is the sum of random variables and also for $\omega_{1} \in \Omega_{1}$,

$$
Y\left(T\left(\omega_{1}\right)\right)=\sum_{k=1}^{n} a_{k} I_{B_{k}}\left(T\left(\omega_{1}\right)\right)=\sum_{k=1}^{n} a_{k} I_{T^{-1}\left(B_{k}\right)}\left(\omega_{1}\right)=\sum_{k=1}^{n} a_{k} I_{A_{k}}\left(\omega_{1}\right)=X\left(\omega_{1}\right) .
$$

Continuing the buildup, consider X to be a nonnegative random variable. Recall we showed in class that for a nonnegative random variable, whether extended or not, there exists a sequence of simple random variables X_{1}, X_{2}, \ldots such that $X_{n} \uparrow X$. Define $X_{i}=\sum_{k=1}^{n_{i}} a_{k}^{i} I_{A_{k}^{i}}$, where $A_{k}^{i} \in \sigma(T)$, i.e. there exists $B_{k}^{i} \in \mathcal{B}_{2}$ such that $A_{k}^{i}=T^{-1}\left(B_{k}^{i}\right)$. Define

$$
Y=\limsup _{i \rightarrow \infty} \sum_{k=1}^{n_{i}} a_{k}^{i} I_{B_{k}^{i}} .
$$

and notice for $\omega_{1} \in \Omega_{1}$,

$$
Y\left(T\left(\omega_{1}\right)\right)=\limsup _{i \rightarrow \infty} \sum_{k=1}^{n_{i}} a_{k}^{i} I_{B_{k}^{i}}\left(T\left(\omega_{1}\right)\right)=\limsup _{i \rightarrow \infty} \sum_{k=1}^{n_{i}} a_{k}^{i} I_{A_{k}^{i}}\left(\omega_{1}\right)=\limsup _{i \rightarrow \infty} X_{i}\left(\omega_{1}\right)=X\left(\omega_{1}\right) .
$$

Lastly, consider an arbitrary random variable X. Decompose $X=X^{+}-X^{-}$, where $X^{+}=$ $\max \{X, 0\}$ and $X^{-}=-\min \{X, 0\}$. Noting that X^{+}and X^{-}are both nonnegative random variables, by the above we have there exists random variables Y^{+}and Y^{-}on $\left(\Omega_{2}, \mathcal{B}_{2}\right)$ such that for all $\omega_{1} \in \Omega_{1}, X^{+}\left(\omega_{1}\right)=Y^{+}\left(T\left(\omega_{1}\right)\right)$ and $X^{-}\left(\omega_{1}\right)=Y^{-}\left(T\left(\omega_{1}\right)\right)$ Therefore,

$$
Y\left(T\left(\omega_{1}\right)\right)=Y^{+}\left(T\left(\omega_{1}\right)\right)-Y^{-}\left(T\left(\omega_{1}\right)\right)=X^{+}\left(\omega_{1}\right)-X^{-}\left(\omega_{1}\right)=X\left(\omega_{1}\right)
$$

for all $\omega_{1} \in \Omega_{1}$. This completes the proof.

Problem 3.4.23

Suppose X_{1}, \ldots, X_{n} are random variables on the probability space (Ω, \mathcal{B}, P) such that

$$
P(\text { Ties })=P\left(\bigcup_{1 \leq i \neq j \leq n}\left(X_{i}=X_{j}\right)\right)=0 .
$$

Define the relative rank R_{n} of X_{n} among X_{1}, \ldots, X_{n} to be

$$
R_{n}= \begin{cases}\sum_{i=1}^{n} I\left(X_{i} \geq X_{n}\right), & \text { on }(\mathrm{Ties})^{c} \\ 17, & \text { on Ties }\end{cases}
$$

Prove R_{n} is a random variable.
Solution: Notice that if a set A is measurable, then the indicator function I_{A} is a random variable since

$$
\left\{I_{A} \leq t\right\}= \begin{cases}\Omega, & t \geq 1 \\ A^{c}, & 0 \leq t<1 \\ \emptyset, & t<0\end{cases}
$$

and Ω, A^{c}, \emptyset are all measurable. Also see that

$$
\left\{X_{i}<X_{j}\right\}=\left\{X_{i}-X_{j}<0\right\} \in \mathcal{B}
$$

since the X_{i} 's are random variables and the difference of random variables is a random variable. Therefore, since $\left\{X_{i}<X_{j}\right\} \in \mathcal{B}$, we have $I_{\left\{X_{i}<X_{j}\right\}}$ is a random variable. Again using the fact that the sum of random variables is a random variable, we have $\sum_{i=1}^{n} I\left(X_{i} \geq X_{n}\right)$ is a random variable. Also, since Ties is measurable, so is (Ties) ${ }^{c}$, and thus $I_{\text {Ties }}$ and $I_{(\text {Ties })^{c}}$ are random variables. Therefore,

$$
R_{n}=\sum_{i=1}^{n} I\left(X_{i} \geq X_{n}\right) I_{(\text {Ties })^{c}}+17 \cdot I_{\text {Ties }}
$$

is a random variable since the space of random variables is closed under addition, multiplication, and scalar multiplication.

